ARM integer cores

Outline:
- the ARM 3-stage pipeline
 - the ARM7TDMI core
 - the ARM 5-stage pipeline
 - the ARM9TDMI core
 - the ARM10TDMI core

The 3-stage ARM pipeline

- fetch
 - the instruction is fetched from memory
- decode
 - the instruction is decoded and the datapath control signals prepared for the next cycle
- execute
 - the operands are read from the register bank, shifted, combined in the ALU and the result written back

The 3-stage ARM pipeline

- Single cycle instructions
 - complete at a rate of one per clock cycle

The 3-stage ARM pipeline

- More complex instructions:

The 3-stage ARM pipeline

- PC behaviour
 - r15 increments twice before an instruction executes
 - due to pipeline operation
 - therefore r15 = address of instruction + 8 (+12 if used after first cycle, though this is architecturally ‘undefined’)
 - in Thumb code the offset is +4
 - normally the assembler makes the necessary adjustments, e.g. in branches

3-stage ARM organization

- ARM components:
 - register bank
 - 2 read ports, 1 write port
 - plus additional read and write ports for r15
 - barrel shifter
 - ALU
 - address register and incrementer
 - memory data registers
 - instruction decoder and control
The ARM7TDMI

- The ARM7TDMI is...
 - an ARM 3-stage pipeline core, with
 - T - support for the Thumb instruction set
 - D - support for debug
 - the processor can stop on a debug event
 - M - support for long multiplies
 - I - the EmbeddedICE macrocell
 - provides breakpoint and watchpoint hardware
 - described later

ARM7TDMI debug support
- the EmbeddedICE module
 - supports breakpoints and watchpoints
 - controlled via the JTAG test access port
- EmbeddedICE & JTAG are covered later

ARM7TDMI characteristics:

- Core area: 2.1 mm
- Power: 87 mW
- Clock: 0 to 66 MHz
- MIPS/W: 690
- Technology: 0.35 µm
- Transistors: 74,209
- Vdd: 3.3 V
- Multipliers: 0
- Cores: 2
- Processors: 1
- Power: 87 mW
- Clock: 0 to 66 MHz
- MIPS: 690
Outline:
- the ARM 3-stage pipeline
- the ARM7TDMI core
 ➔ the ARM 5-stage pipeline
- the ARM9TDMI core
- the ARM10TDMI core

Getting higher performance
- Increase the clock rate
 - the clock rate is limited by the slowest pipeline stage
 - decrease the logic complexity per stage
 - increase the pipeline depth (number of stages)
- improve the CPI (clocks per instruction)
 - fewer wasted cycles
 - better memory bandwidth

The 5-stage ARM pipeline
- Fetch
- Decode
 - instruction decode and register read
- Execute
 - shift and ALU
- Memory
 - data memory access
- Write-back

The 5-stage ARM pipeline
- Reducing the CPI
 - ARM7 uses the memory on nearly every clock cycle
 - for either instruction fetch or data transfer
 - therefore a reduced CPI requires more than one memory access per clock cycle
- Possible solutions are:
 - separate instruction and data memories
 - double-bandwidth memory (e.g., ARM8)

ARM9TDMI
- The ARM9TDMI is...
 - a ‘classic’ Harvard architecture 5-stage pipeline
 - separate instruction and data memory ports
 - with full support for Thumb and EmbeddedICE debug
 - aimed at significantly higher performance than the ARM7TDMI
 - enhanced pipeline operates at 100-200 MHz
ARM9TDMI pipeline

- Thumb instructions are decoded directly

ARM9TDMI

- EmbeddedICE
 - as ARM7TDMI, plus:
 - hardware single-stepping
 - breakpoints on exceptions
- On-chip coprocessor support
 - for floating-point, DSP, and so on

Process: 0.25 µm Transistors: 111,000 MIPS: 220
Metal layers: 3 Core area: 2.1 mm² Power: 150 mW
Vdd: 2.5 V Clock: 0-200 MHz MIPS/W: 1,500

ARM10TDMI

- The ARM10TDMI is...
 - aimed at significantly higher performance than the ARM9TDMI
 - achieved through use of:
 - higher clock rate
 - 64-bit I- and D-memory buses
 - branch prediction
 - hit-under-miss D-memory interface

ARM10TDMI pipeline

- Additional time allowed for
 - I- and D-memory accesses
 - instruction decode
- 6-stage pipeline